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ABSTRACT

The linear response of an oblique overdriven detonation to imposed free stream distur-

bances or to periodic movements of the wedge is examined. The freestream disturbances

are assumed to be steady vorticity waves and the wedge motions are considered to be time

periodic oscillations either about a fixed pivot point or along the plane of symmetry of the

wedge aligned with the incoming stream. The detonation is considered to be a region of

infinitesmal thickness in which a finite amount of heat is released. The response to the im-

posed disturbances is a function of the Mach number of the incoming flow, the wedge angle,

and the exothermicity of the reaction within the detonation. It is shown that as the degree

of overdrive increases, the amplitude of the response increases significantly; furthermore, a

fundamental difference in the dependence of the response on the parameters of the problem

is found between the response to a free stream disturbance and to a disturbance emanating

from the wedge surface.

'Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



1. Introduction.

The research and development of supersonic propulsion devices for aerospace planes

that will cruise at hypersonic speeds has renewed interest in the interaction of freestream

disturbances and shock waves and the interaction of such disturbances with shock induced

detonation waves. The latter interaction is of particular importance in the theoretical

propulsion device known as the Oblique Detonation Wave Engine (ODWE) in which all

burning takes place in a thin overdriven detonation attached to a wedgelike surface. Of

course, the stability of such a detonation structure has never been demonstrated; however,

numerical calculations (Fujiwara, Matsuo, and Nomoto 1 ) of a supersonic flow past a wedge

in a reacting gas have indicated that an oblique detonation might be possible as the

degree of overdrive is increased. The former interaction is of importance to both the

ODWE and the SCRAMJET concept. In the ODWE, inert shock structures are utilized to

precondition the incoming stream such that an oblique, overdriven detonation is possible at

the predetermined location. In the SCRAMJET, mixing of fuel and oxidizer in high speed

flows is of major concern, and the enhancement of turbulent mixing by oscillating shock

waves has been proposed (Kumar, Bushnell, & Hussaini 2). In addition to the freestream

disturbances which are inherently present in practically all high-speed flows of technological

importance, the oscillation of the surfaces to which the shock/detonation wave are attached

must be considered. These oscillations will induce curvature into the shock/detonation,

and furthermore, induce the generation of pressure, vorticity and entropy waves. It is

the purpose of this study to investigate the interaction of freestream disturbances and an

oblique overdriven detonation (the shock wave is considered as the zero heat release limit

of this problem) and to investigate the generation of pressure, entropy and vorticity waves

by the small movements of the structure to which the oblique detonation wave is attached.

The model problem, assumes a wedge of half angle 9 in a uniform supersonic stream.

In the presence of the wedge, the supersonic flow abruptly changes direction through

a thin layer at an angle X to the axis of symmetry of the wedge in which all of the

macroscopic quantities such as density, pressure, temperature and velocity change in an

order one sense (see Fig. 1). The angle X is a function of the flow speed, wedge angle, and
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the exothermicity and is found by assuming the layer to be of infinitesmal thickness and

applying the generalized Rankine-Hugoniot conditions to relate the velocities, pressure,

temperature and density ahead of and behind the discontinuity. In an inert flow, the

discontinuity is just a regular shock wave; whereas in a reacting flow, the thin layer is

considered as a detonation with a finite amount of heat release. The base flow was examined

by Gross 3 and later by Pratt, Humphrcys, & Glenn 4 in the context of its application to

the ODWE. It is clear that when heat release is allowed for, there is both a maximum and

a minimum wedge angle for which the weak oblique detonation could exist. The maximum

wedge angle corresponds to detachment while the minimum wedge angle corresponds to

the Chapman-Jouget conditions in which the normal component of the flow behind the

detonation is sonic.

The equations governing the gas flow both ahead of and behind the shock/detonation

are the Euler equations along with the ideal gas law. The no mass flux condition is imposed

on the wedge surface, so that the normal component of the flow must have the same

velocity as the velocity of the wedge normal to its surface. The analysis is accomplished by

linearizing the Euler equations about the base state and applying the Rankine-Hugoniot

conditions at the mean position of the detonation.

Two distinct problems are considered: an oscillating wedge in an otherwise uniform

supersonic stream of a reactive mixture hereafter referred to as the Oscillating Wedge

Problem, and a stationary wedge in a non-uniform flow consisting of a uniform stream

and a superimposed disturbance hereafter referred to as the Stationary Wedge Problem.

The former was first proposed by Carrier 5 and Van Dyke' for the nonreacting flow. Their

interest was in the surface pressure distribution and the resultant forces and moments and

their relevance to oscillating airfoils. This problem was reconsidered by Hussaini, Collier

and Bushnell7 from a different point of view. They were interested in vorticity generation

owing to shock motion in non-reacting flows. The latter problem of a shear wave interac-

tion with a detonation wave induced by a wedge in a supersonic flow is an extension of

the study of Jackson, Kapila, and Hussaini? in which a weak sinusoidal vorticity wave is

obliquely convected through an overdriven detonation with the angle of incidence taken

as the angle that the upstream flow makes with the normal to the detonation. In that
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study, the flow field behind the detonation wave is unobstructed, and two possible distur-

bance patterns exist depending upon the angle of incidence. For constant upstream Mach

number and constant heat release, there exists a critical angle of incidence below which

the flow downstream is subsonic and above which the flow downstream is supersonic. For

supersonic flow behind the detonation (i.e. for large angles of incidence), the acoustic dis-

turbance generated by the incident vorticity wave is also sinusoidal in nature; for subsonic

flow behind the detonation, the acoustic disturbance is exponentially damped. Non-linear

numerical calculations by Lasseigne, Jackson and Hussaini9 confirmed this behaviour and

provided some limits on the applicability of the linear results. In particular, for flows not

near the critical angle and with small vorticity disturbance amplitudes up to 10%, the lin-

ear theory quite accurately predicts the response. For flow angles near critical or for larger

disturbance amplitudes, a steady state is not achieved numerically and perhaps may not

exist, and therefore, comparisons with the linear theory could not be made. In the present

study, only overdriven detonations in which the flow behind the detonation is supersonic

are considered.

In each problem considered, the focus is on (i) the deviation of the detonation po-

sition from its constant undisturbed position, (ii) the vorticity and pressure disturbances

generated or transmitted at the detonation, and (iii) the variation of these disturbances

with increasing exothermicity of the reaction and inflow Mach number.

2. Model Problems and Governing Equations

In this section and the rest of the paper, the following nomenclature is used (see Figure

1 for details): (i) (x, y) are coordinates along and normal to the wedge centerline with the

origin at the wedge apex, and (u, v) are the corresponding velocity components; (ii) (X, Y)

are the coordinates along and normal to the wedge surface, and (U, V) are the v,'Aocity

components in these directions respectively; (iii) ((, 77) are the coordinates normal and

tangential to the detonation and (M, N) are velocity components normal alxd tangential

to the detonation; (iv) an overbar indicates a dimensional variable, n tilde indicates a

nondimensional variable in the freestream, ()o denotes a base state quantity, and a prime

designates a disturbance quantity.
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The problem of a steady plane detonation attached to a wedge in a uniform flow field

has been given in Gross3 . The turning angle X of the detonation is a function of the

flow velocity, the exothermicity, and the wedge angle. In solving the generalized Rankine

Hugoniot equations, a diagram similar to Figure 2a is generated for each incoming Mach

number or a diagram similar to Figure 2b is generated for each value of the exothermicity

parameter. The physically relevant portion of the curves for the applications considered

is the positively sloped portion. This corresponds to a weak overdriven detonation (as

classified by Pratt4 ) in which the normal velocity behind the detonation is subsonic, but

the overall flow behind the detonation is supersonic.

The equations governing the flow on each side of the detonation are the compress-

ible Euler equations for an ideal gas. The dimensional form of the conservation of mass

equation, the momentum equations and energy equation for an inviscid ideal gas in the

coordinate system tangential and normal to the wedge surface is

(h + UUX + VU) + iX = 0 (lb)

±UVi + gV + VV) + A? = 0 (ic)

lp') + U( +/) (l/)f) = 0 (ld)

The exothermic reaction is assumed to be concentrated in the detonation of infinitesmal

thickness, and therefore, the Rankine-Hugoniot conditions with heat release provide the

appropriate conditions for the flow immediately behind the detonation. For an ideal gas,

the dimensional Rankine- Hugoniot conditions are

{PM}lf = {IPMlb (2a)

{p + ,p 2}If = {p + I1}tb (2b)

P+ + 1 'y P 1
- 2 + O = - + 2/ M 1b (2c)

NIf = NIb (2d)

where If and 1b indicate that the quantities should be evaluated on the fresh side and burnt

side of the detonation. The uniform state of the burnt gas in the absence of disturbances

4



has been chosen to nondimensionalize the flow variables. Hence, the characteristic scale

for velocity is the sound speed a*; for pressure, density and temperature, the scales are

p*, p* and Tb*. For the Stationary Wedge Problem, the characteristic length scale L* is

chosen such that the wavenumber of the incoming vorticity disturbance is unity; for the

Oscillating Wedge Problem two types of motion are considered: a pivot about a fixed point

along the centerline of the wedge and a lateral periodic motion along the centerline. For

the pivoting motion of the wedge, the length scale is chosen as the distance from the apex

to the pivot point; and for the lateral motion of the wedge, the length scale is chosen as

ab/w* where w* is the dimensional frequency of the wedge oscillations (in nondimensional

units the frequency of the wedge oscillations will be unity). All length scales are assumed

to be very large compared to the detonation thickness.

According to the variable designations, Ao + M' and No + N' are the nondimensional

velocities of the gas in the fresh mixture normal and tangential to the undisturbed deto-

nation position, and M0 + M' and No + N' are the same quantities in the burnt mixture.

Furthermore, Po + P', io + ', and to + P' are the nondimensional pressure, density and

temperature in the fresh mixture with pa + p', pu + p' and To + T' being the same quan-

tities in the burnt mixture. Because of the variables chosen for nondimensionalization,

p0 = p0 = To = 1. If the small deflection in the detonation position is given by " = h'(t, t)

(see Figure 1), the constant leading order quantities at the detonation are:

o= i o +v/(i - Mo1)2 + 2Mo2(-t + 1)Q (a
Mo(f + 1)

No = No, (3b)

o = Mo (3c)

to = + -(y Mo(3d)

= (1-Q+1(Y-1)(MA 0o2 )),(3d)

and the disturbance quantities at the detonation are:

M' = ai(Noh, + h') + AjlMf', (4a)

N' = a 2h, + A 2 N ', (4b)
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p =y3(Noh', + h') + -yA31M', (4c)

where

a 1 - (y ) 1)MoMo +-M (1 -Mo )
(1-_M02)

Al = 1 o( +yM2) - 2yMO2+ (-y -1)MCoMo

a= (M0r - MO),d

A 2 =1

= (1 Iwo,)

A3=(1 Mo {2 + 2(,y - 1)M,2, 1)MCoMo - ,3o(2 + (,y - 1)M2)}

In the above disturbance relations, ~'= = =0 which is appropriate for the three

problems considered. The exothermicity parameter is Q = (Y- 1)q/a*2 . For convenience,

a second exothermicity parameter, an inflow Mach number, and the inflow Mach number

normal to the detonation are defined as q = (t- 1)q/a~f 2 , Ui = U0 f /a;, and M,,

k sin(X)Uo f /a;f, respectively.

For the Stationary Wedge Problem, the velocity field for the weak sinusoidal vorticity

disturbance in the fresh incoming gas is assumed to be

0U=U(o +'ECTcos(Y +b), V 01 ~

where e is small; the normal and tangential components are

A 0 + k' = U0o sin(x) + e 0 sin(x) cos(y + b), (6a)

N0o +N1' = 00 cos(x) + fo cos(x) cos(Y +b). (6b)

For the Oscillating Wedge Problem, the free stream is assumed to be undisturbed U = U0 ;

therefore

1 o= Uo sin(x), 11' = 0, (7a)

NTO = Uo cos(x), N'= 0. (7b)
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The small disturbance in the incomliig flow or the oscillation of the wedge produces a

small deflection of the detonation from its otherwise planar state. This deflection gener-

ates a small amplitude acoustic, vorticity and entropy disturbance in the gas behind the

detonation. Therefore, the following forms are introduced

U = U0 +fuV', (8a)

V = fV', (8b)

p = 1 + ep', (8c)

p = 1 + Cp'. (8d)

The disturbance quantities satisfy the linearized Euler equations

1,1
u;U + oU' + -pX = 0, (9a)

y' + v0y + pl = o, (9b)-y
p + Uop' + /(u* + V .) = 0, (9c)

(p' - -yp')t + Uo(p' - yP')x = 0. (9d)

In addition, the zero flux condition must be imposed at the wedge surface. For the Sta-

tionary Wedge Problem where the wedge is considered stationary this condition is simply

V'1yo = 0. (10)

For the Oscillating Wedge Problem where the periodic motion is a pivoting motion about

the point (x,y) = (b,O) with angle of rotation given by F = Eexp(iwt), the condition

becomes

V'jy=0 = -[Uo + iw(X - bcos(O)e iwt , (11)

where the pivot point is b = 1 as a result of the nondimensionalization. For lateral motion

of the wedge where the position of the apex is given by (xa, y,,) = (e i wt , 0), the condition

is

V'lI=o = -iw sin 0 eWt. (12)
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with w = 1 as a result of the nondimensionalization. Finally, the conditions at the detona-

tion (4), where M' = sin(X-O)EU' -cos(X-O)eV' and N' = cos(x-8)CU' +sin(X- )EV',

completely determine the solution and also determine the unknown detonation position
h'(,,t).

3. Analytic Solutions

A. Stationary Wedge Problem. In this problem where the wedge is stationary

and the free stream is convecting a steady vorticity wave given by (5), the entire solution,

including the detonation position h', is steady. The governing equations are separable, and

the functions which satisfy the no flux condition at the wedge surface are:

p = Pi cos(piX + Ai) cos(pi/3Y),

V1 = -00P sin(p1x + A,) sin(p,/3Y),
wyo

1
U' = - Pi cos(,ix + zi) cos(pi,/3y);

-YUo

and

p' =0, V' = 0, U' = S(Y).

The constants pi, 1 and Ai are arbitrary, S(Y) is an arbitrary function which represents

the vorticity disturbance, and/32 = U02 - 1. A general steady disturbance is represented

by a linear combination of the above functions or by:

p' = -U 0 {f(X + /3Y) + f(x - flY)} (13a)

V= f{f(X + 3Y) - f(X - #3Y)} (13b)

U' = S(Y) + {f(X + flY) + f(X - )3Y)} (13c)

where f is an arbitrary function. The conditions across the detonation X = AY (y =

Y(cos 0 + A sin 0) and 71 = v1 + A2Y along the detonation) can be written as an overde-

termincd linear system for two of the unknown functions S(Y) and fhy = V1i-+A2h'
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1 -a1 N0
S(Y)A -2(14)
hy

A cos(y + 6) + (OA - 1)f((A + O)Y) - (OA + 1) f((A - O)Y)

A2 cos(y +6)- (A + f) f((A + P)Y) -(A- ) f((A - O)Y)

A3 cos(y + 6)+ V1+X Uo (f((A + O)Y) + f((A -)Y))

-here

A, =U0 1/ +A 2 sin(X)AI,

A 2 = Uo v1 + A2 cos(X)A 2 ,

A 3 = Uo V1 + A2 sin(X)A3.

'he above system is easily reduced to

S(Y)

0 -a3NO (15)

0O 0h

(A l-'A 3)Cos(y + 6)- .f((A +)Y) C f((A,\-)Y)

A3 cos(y + 6) + V + A2UO {f((A + #)Y) + f((A - I))}

[a3No(A 2 - AAj) + (Aoq No - ct2)A 3 ] COS(y + 6)

+Pf((A + )3)Y) + P+f((A - fl)Y)

'here

o± = a3 + ai Uo v 2 + 2 ± 8Aa 3,

P± = v1 + A2 {Uo( 0No - a2) ± #V1 + A2a 3N0 }.

'he last equation provides the solvability condition which determines the unknown function

(z). If the function f(z) is expanded as

f(z) = E3 Pi cos(vz + 6), (16)

i=0
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it is found that

Va- Cos 0+ A sin 0 (1 7a)

=ijrv r' vo,' (17b)

_O a3NO(A 2 - AA1 ) + (Aa1N0 -2 (1 7c)

Pi ___- (P+ PO(1Id

where
A -3

Utilizing the above quantities, the displacement of the detonation and the vorticity behind

the shock can be conveniently written as

- + UOXfT~VPO(P_ - P+)U 0 VTY5+ AP 0 cs6
a3 N0  o(A+f)o 6 (P- + P+)a3No

+ - P±) VfT7+XU 0 P0 cos((A - /3)zVOY + 6)- (P- - Po)/ 20P cos(6)
t a 3 NOP- a 3 NoP-

+ (P- - P+)JfT -A2U P (P- [cos((A - i3)r'voY + 6) - cos(b)] ,(18a)

S(Y) - & 1 -ca 3 ) a. cos((A + Oe)voY + 6)

+ a-3 - y-Po P cos((A - Orv + 6). (18b)

All quantities have beeni determined, and the results are presented in Section 4.

B. Oscillating Wedge Problem. For the problem where the wedge pivots about

a point with a time periodic motion of small amplitudes, the disturbances are also time

periodic. This implies that any transients due to the initiation of the motion have had
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sufficient time to propagate out of the region of interest. The solutions are sought in the

form

U = Uo + cei'tU', (19a)

V = eei'tVI, (19b)

p = 1 + feiWt p I  (19c)

p = 1 + ceiwtp', (19d)

and the linearized Euler equations become
1 ,

icU' + UoUx + x =0 , (20a)

iwV' + UoVk + p I = 0, (20b)
1y ,

iwp' + UoPx + U(Ux + V4.) = 0, (20c)

iw(p' - P'yp) + Uo(p' - tp')x = 0. (20d)

The first three govern the acoustic and vorticity disturbances, while the fourth governs the

convection of the entropy disturbance. In addition, the detonation position is assumed to

be a function of Y (71 = v"/T+X2Y along the detonation) and t of the form

h' = feiwho(Y). (21)

It is only necessary to utilize the equations for U', V' and p' to completely determine all

quantities.

Following Carrier 5 and Van Dyke6 , the functions 0 and E are introduced such that

U' = x + Ey, (22a)

V' = Oy - Ex, (22b)
p' = -7(iwqo + U0¢x), (22c)

which are found to satisfy

V 2 € - U02¢xx - 2iwUoqx + w 2€ = 0, (23a)

iwE + UoEx = 0. (23b)
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The eigenfunctions for the first equation are
0- iWl2 WOX2L

eiwUoX3 2 cosh (vO)J, (-r), e-i Ux/ 2 sinh (vO)J, (-r)

with r 2 = X 2 - 32 y 2 and tanh(O) = /3Y/X. In order to satisfy the boundary conditions,

the rotational component E and the detonation position h0 are expanded in convenient

series of Bessel Functions. The final form of the solution is

= e - i UOX/I 2 E {aI cosh (vO) + b, sinh (vO)} J, (kr) (24a)
V= 1

E = e- i (X/UO+AY/(UO° 3 2)) Z cJ,, (kEY) (24b)
V= 1

h0 = eiWUo\y/'3 2 Z dJ, (kEY) (24b)
V=0

where k = and % /A2 -#2. It is left to determine as,, b,, c, and d, using the

boundary condition at the wedge surface and the appropriate conditions at the detonation.

It should be noted that solutions exist when a0 and co are not zero, but these solutions

represent modes which are excited by the initial start up. By assumption these modes

are neglected, and the summations for 0 and E start at v = 1. The assumption that the

detonation is attached to the wedge apex determines do and the condition at the surface

(11) determines the b,. For the wedge which oscillates about the pivot point,

do = -bcos(X), b" = i/A [T7 + (-r)-'] + bcos0 [r' - (-T)-] (25)

where i" = iUo + iVU- - 1. The conditions at the detonation (4) provide the recursive

relations (see Appendix) for a,, c, and d,, (v > 1) in terms of the known quantities b,, and

do. For the wedge undergoing lateral periodic motion, the frequency w has been normalized

to unity and the constants do and b, are found to satisfy

do= sin(X), b, = sin0 [(r)" + (-r) - ] (26)

where r = iUo + i U7 - 1.

4. Results. It is possible to compute the velocity and pressure fields for the cases pre-

sented above. After determining the various coefficients, the summations (18) or (24) are
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computed. This paper focuses on the detonation position and the vorticity and pressure

disturbances generated or transmitted at the detonation as a function of the length along

the detonation. Furthermore, the variation of these quantities as a function of exothermic-

ity and inflow Mach number is investigated.

A. Stationary Wedge Problem Figures 3(a-c) show the detonation position h0 ,

vorticity response and pressure response for inflow Mach number Uin equal to nine with q

= 1, 6 = 0 and 0 = 20. The results of Jackson, Kapila, and Hussaini7 are shown in dashed

lines and represent the lead term in each of the equations (18a) and (18b) as well as the

first generated pressure wave. The differences between the oblique detonation attached to

the wedge and the unobstructed oblique detonation are seen. First, the pressure for the

attached detonation has two discernible wavelengths, a result of a perfect reflection off the

wedge surface with the reflected pressure wave being just as strong as the incoming wave.

When the reflection returns to the detonation, it distorts the detonation further, as is seen

by the two discernible wavelengths in the detonation position, and some of the energy is

transferred to new entropy and vorticity waves. This second interaction is weak as seen

from the small difference between the vorticity response of the attached oblique detonation

and the detonation in the unobstructed flow. The second difference is in the detonation

position. There appears to be an overall change of slope for the attached detonation. This

change of slope can be determined from the sum of the second and fourth terms in equation

(18a) where it is found that this apparent change of slope is proportional to cos 6. The

summation in (18a) is approximately zero since the quantity (A - /3)viY is small for the

scale chosen in Figure 3. The second term of (18a) represents the change in slope at the

apex of the wedge also proportional to cos 6. For the unobstructed detonation, the solution

demonstrates no overall dependence on the phase 6 of the incoming disturbance owing to

the invariance under a vertical translation; however, with a wedge present, the problem is

no longer invariant under such a translation which results in the effects just mentioned.

The dependence of the responses on inflow Mach number and exothermicity is ex-

plored in Figures 4. Since for fixed wedge angle, a change in any of the other parameters

automatically changes the angle at which the detonation meets the incoming flow, it is

not possible to isolate individual effects in a single figure. Therefore, the Mach number
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of the velocity component normal to the detonation on the outflow side is chosen as the

independent variable. This independent variable provides an easy measure of the degree of

overdrive since the Chapman-Jouget point corresponds to the outflow normal Mach number

equal to unity. The input parameters are chosen in terms of the incoming stream although

the nondimensionalization has been given in terms of the outflow variables. The nondi-

mensionalization was chosen for convenience of the algebraic manipulations even though

it is conceptionally easier to think about specifying inflow conditions. Figure 4a is the

amplitude of the first term in equation (18a) and Figure 4b is the second term of (18a)

which gives the change of slope at the apex owing to the presence of the wedge. Figure

4c is the amplitudes of the first term of (18b) which is the transmission coefficient for

the vorticity, and Figure 4d is the amplitude of the first term in the summation of (18b)

which represents the strength of the vorticity generated by the first reflection. Figures

4e and 4f are the first and second generation coefficients for the pressure. The curves of

Figure 4 are produced by fixing the inflow Mach number and the exothermicity parameter;

then, the half angle of the wedge is varied from its minimum to maximum value. LFrom

Figures 4, it is determined that for constant exothermicity or constant inflow Mach num-

ber, the response decreases as the other parameters are changed such that the C-J point

is approached. Furthermore, the summations do not converge as the the sonic point is

reached which corresponds to a wedge angle near the maximum allowable wedge angle and

therefore the maximum degree of overdrive for a given inflow Mach number and reaction.

At the sonic point, most of the assumptions inherent in performing the linear theory do

not hold and a nonlinear theory is required. Four carefully chosen points are indicated in

Figures 4. These correspond to Uin = 5, 0 = 200; Ui, = 9, 9 = 10'; Ui,, = 9, 9 = 20';

and Ui, = 9, 9 = 26'. The first two compare in degree of overdrive. The first and third

consider the trend used in many numerical calculations (i.e. the same reaction, the same

wedge angle, same freestream conditions except for inflow Mach number). Finally, the

first and fourth correspond to approximately the same angle between the detonation and

the freestream. The relevant data is summarized in Table 1. From these points, it is

determined that the transmission coefficient of the vorticity and the vorticity generated by

the first reflection are dependent on the inflow Mach number. The transmission coefficient
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for Mach 5 is greater than the transmission coefficient for all three indicated points with

Mach 9. The inflow Mach number dependence is not as great for the vorticity generated

by the first reflection; this is consistent with the results for the Oscillating Wedge Problem

discussed below. The first and second pressure coefficients are almost identical owing to

the perfect reflection off the wedge surface. The second coefficient is only slightly lower

than the first, since some of the energy of the reflected wave is transferred to vorticity,

entropy and detonation curvature. The pressure coefficients show a dependence on the in-

flow Mach number owing to the inflow Mach number dependence of the vorticity response

which generates the pressure disturbance.

In addition to the effects of Mach number on the flow, the effects of exothermicity is

also explored in Figures 4. The crosses represent the response for Uin = 9 and q = 0 and

the filled squares represent the responses for Ui, = 9 and q = 2. The angles chosen for the

calculations are the same as for the Ui, = 9 and q = 1 case already discussed. It is seen

that increasing exothermicity weakly increases the vorticity and pressure responses for the

same wedge anglc; however, for approximately the same degree of overdrive as measured

by the normal outflow Mach number, exothermicity is seen to significantly increase the

vorticity and pressure responses. The response of the detonation position is seen to be

almost completely determined by the degree of overdrive.

B. Oscillating Wedge Problem. For the wedge undergoing a periodic pivoting

motion, equation (25) is used in the recurrence relation and the summations (24) are

computed. The pressure response p', the vorticity response Eyy+Exx, and the detonation

position h' are shown as functions of the distance from the apex along the detonation for

three flow conditions in Figures 5. The flow condition for the first column are Uin = 5,

9 = 200, and q = 1; for the second column, Ui, = 9, 6 = 10, and q = 1; and for the

third column, Ui,, = 9, 9 = 200 and q = 1. Many oscillations are shown in Figures 5

although for any device of practical length only a few such oscillations are expected to be

present. However, by considering the limit of large distances from the wedge apex, it is

easier to quantify the results. Each of the three curves were fit to the functional form of

Ail cos(kq + A) for q/large (,q being the distance along the detonation). The amplitude of

the pressure disturbance is directly proportional to the frequency of the oscillation of the
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wedge, the amplitude of the vorticity is proportional to the square of the frequency, and the

wave number of the response is proportional to the frequency. This can be determined by

the computed solutions and also by examination of the summations; the pressure involves

first derivatives of 0 while the vorticity involves second derivatives of E. In Figure 6, the

amplitudes determined by the fitting are presented as functions of the outflow Mach number

normal to the detonation. It is clear that the pressure and detonation position amplitudes

depend almost completely on the outflow Mach number with very little dependence on

the tangential components and hence on the inflow Mach number. The responses decrease

quickly as the C-J point is approached. The dependence on the tangential component (and

therefore the inflow Mach number) is seen in the plots of the frequencies and the vorticity.

The marked points are for the same conditions given for the Stationary Wedge Problem.

The effects of holding the wedge angle and the exothermicity fixed while increasing the

inflow Mach number are opposite the trend observed for the transmission of the vorticity

wave. The responses greatly increase with increasing inflow Mach number. While the

vorticity does show a strong dependence on the outflow normal Mach number, mostly

owing to the strong dependence of the pressure which generates the vorticity, there is

an equally strong dependence on the inflow Mach number. The points corresponding to

Uin = 5, 9 = 200 (square) and Ui, = 9, 9 = 100 (triangle) have almost the same degree

of overdrive, but differ substantially in the vorticity generated although there is almost no

difference in the pressure response.

The effects of exothermicity are investigated by considering Ui, = 5 and q = 0 for

three wedge angles: 0 is equal to 5', 10', and 200. The responses are given by the filled

symbols in Figures 6. For 9 = 100, the effects of exothermicity is to significantly lower

the degree of overdrive, and therefore there is a significant decrease in the responses as

the exothermicity is increased for constant wedge angle and constant inflow Mach number.

However, for the two cases where the inflow Mach number is constant and the degree of

overdrive is approximately the same (the two squares), the higher the exothermicity, the

larger the vorticity response; for the same two conditions there is little variation in the

pressure response.

The above analysis is a limiting case since the disturbances far away from the wedge
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apex are mostly the result of the relatively large disturbances imposed by the large move-

ment of the wedge downstream of the pivot point. Hence, only one wavelength is present

which represents the disturbance generated by the movement of the wedge surface which

propagates along the characteristic intersecting the detonation; disturbances with other

wavelengths which would represent the regeneration of acoustic waves by curvature of the

detonation front and the subsequent reflection off of the wedge or the displacement of the

detonation by movement of the apex are very small by comparison and are not discernible

in the figures. The response of the detonation front decreases rapidly as the C-J point is

approached since the characteristic along which the pressure disturbance travels from the

wedge surface to the detonation and the detonation position itself become almost parallel

as the C-J point is approached with the C-J point being the limiting case when the two

are exactly parallel. The problem of lateral periodic motion discussed below provides a

counterexample to the above problem in which the disturbance strength does not increase

as the distance from the apex of the wedge increases.

The summations (24) are again computed after solving the recurrence relations uti-

lizing (12) for the boundary condition rather than (11); therefore, equations (26) are used

in the recurrence relation in place of (25). The amplitude of the imposed disturbance does

not increase as a function of the distance from the apex as it does for a pivoting motion of

the wedge. Although the results are not as easily quantifiable in this case as in the previ-

ous case, Figures 7 (which have the same flow conditions as Figures 5) provide insight into

the underlying physical processes. First, the pressure responses and the responses of the

detonation position show a single overall wavelength which is identical to the wavelength

observed for the pivoting wedge with the same frequency of motion. This results from the

same physical process, that is, the movement of the wedge surface generates a pressure

disturbance which propagates to the detonation position where it interacts with the det-

onation by distorting the position and initiating the generation of entropy and vorticity

disturbances. Disturbances of shorter wavelengths result from the movement of the apex

of the wedge to which the detonation is assumed to remain attached. This disturbance

decays as a function of the distance from the wedge faster than the disturbance owing to

the movement of the wedge surface. The second disturbance becomes weaker P's the angle
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X is decreased since the constant do is proportional to the sine of this angle. This type of

disturbance is also present for the pivoting wedge, but in the limit of large distance from

the apex, it is negligible compared to the disturbance generated by the movement of the

wedge surface.

4. Conclusion. The linear response of an oblique overdriven detonation to imposed free

stream disturbances or to periodic movements of the wedge surface and apex is examined.

It is found that the strength of the disturbance is best characterized by considering the

normal Mach number of the flow behind the detonation. In all cases, the response, as

measured by the difference of the detonation position from its undisturbed position, the

pressure at the detonation, and the vorticity at the detonation, is weaker as the C-J point

is approached. This is a result of the detonation and the only characteristic which crosses

the detonation becoming parallel as the C-J point is approached. It is also found that the

vorticity response is in general dependent on the inflow Mach number, while the pressure

response and the deviation of the detonation from its undisturbed position are mostly

functions of the normal outflow Mach number.

From this analysis, a fundamental difference in the behaviour of the responses as

functions of the input parameters dependent upon whether the detonation is responding

to a disturbance coming from the free stream or whether the disturbance is propagating

from the wedge surface to the detonation is shown. In the latter case, the pressure and

detonation position show almost no dependence on the inflow Mach number assuming that

the degree of overdrive is the same, and the vorticity responses show a significant influence

of the inflow Mach number. This same behaviour is seen in the response of the detonation

to the first reflected pressure wave arriving from the wedge surface. The change in slope at

the apex of the wedge is again independent of the inflow Mach number assuming the same

degree of overdrive. Also, the vorticity generated by this reflected wave shows an increase

for increasing inflow Mach number (wedge angle and exothermicity constant) whereas the

Immediate response to the incoming vorticity wave shows the opposite dependence on the

inflow Mach number. The effects of increasing exothermicity while holding inflow Mach

number and wedge angle constant show the same opposite behaviour depending on whether

the detonation is responding to a free stream disturbance or to a disturbance emanating
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from the wedge surface.

In determining if an oblique detonation is stablized by increasing the Mach number

of the incoming flow, this study shows that the computational domain will need to be

sufficiently large in order to capture the response of the system to reflected acoustic waves.

The response to these reflected waves increase with increasing Mach number, whereas the

response to disturbances coming from the freestream decrease with increasing Mach num-

ber. It could be imagined that increasing inflow Mach number is stabilizing io freestream

disturbances while at the same time is destabilizing to disturbances reflected from the

wedge surface or generated by movements of the wedge itself.
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Appendix. The recurrence relation is the same as given in Van Dyke 6 with the matrix

elements modified to allow for heat release across the discontinuity. Further algebraic

simplifications could be made; however, the formulae given here can easily be compared

to a direct application of the linearized conditions across the detonation.

cosh(v~o) - (Aca 2 + aAo)/(l + A') a,,+ I

Ssinh(vo) 0 (AaiNo- 0Q2 )/(1 + A2 ) c, 1 +

-Uo coshi(vEo) 0 - a 3 No/V/ + A2  d,+I

-2iUocosh(vOo) -2iA/Uo 2iAUo(Aa 2 +o, jNo)/(l + A2 ) av
-2i/3 2 0 1 / /+A 2

0 i132 /Uo 2iAUo(( 2 - AajNo)/(1 + A2 ) c,

+2i 2 olA//1+A
2

2i cosh(vOo) 0 2iAUoa 3 No/i 1 + A2 - 2il 2a 3  (I,
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-cosh(vo 0 ) -/ 1(Aa2 +alNo)/(1+A 2 ) a,_ 1

+ (l sinh(ve0) 0 - (ao lNo - 02)/(1 + A 2 ) CVIl

Uocosh(vOo) 0 a3No/ 1+A 2  -I
sinh(v0o) -2'Uo sinh(veo) -sinh(veo)\ b.+,

+ Scosh(vO0) 0 j cosh(vEo) bV

-U0 sinh(vEo) 2i sinh(vO0) Uo sinh(vo)k by- 1
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Ui,, 0 q Min/Mjc X Symbol (Figure)

5 20 1 1.178 37.41 0 (4,6)
9 10 1 1.157 18.64 0 (4,6)
9 20 1 1.663 28.46 L (4,6)
9 26 1 2.033 35.62 0 (4)
9 10 0 2.314 14.90 + (4)
9 20 0 3.967 26.15 + (4)
9 26 0 4.977 33.57 + (4)
9 10 2 1.019 22.61 m (4)
9 20 2 1.360 30.86 m (4)
9 26 2 1.625 37.78 m (4)
5 5 0 1.300 15.07 * (6)
5 10 0 1.659 19.37 . (6)
5 20 0 2.485 29.80 V (6)

Table 1. Degree of overdrive 1 ,,,/M1Ij and dctonation angle y for the input pa-

rarneters inflow Mach number Ui,,, wedge half-angle 0, and heat release parameter q. Also

indicated are the corresponding symlol and figure numlber for each inlow condition.
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